- Back to Home »
- 4G-Tele Innovations >>>>ScienceFactsBlog
Posted by : Rihsab
Monday, 18 November 2013
4G-Tele Innovations
from Science Facts Blog
In telecommunication systems, 4Gis the fourth generation of mobile phone mobile communication technology standards. It is a successor to the third generation (3G) standards. A 4G system provides mobile ultra-broadband Internet access, for example to laptops with USB wireless modems, to smartphones, and to other mobile devices. Conceivable applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, 3D television, and cloud computing.
Two 4G candidate systems are commercially deployed: the Mobile WiMAX standard (first used in South Korea in 2006), and the first-release Long Term Evolution (LTE) standard (in Oslo, Norway and Stockholm, Sweden since 2009). It has however been debated if these first-release versions should be considered to be 4G or not, as discussed in the technical definition section below.
In the United States, Sprint (previously Clearwire) has deployed Mobile WiMAX networks since 2008, and MetroPCS was the first operator to offer LTE service in 2010. USB wireless modems have been available since the start, while WiMAX smartphones have been available since 2010, and LTE smartphones since 2011. Equipment made for different continents is not always compatible, because of different frequency bands. Mobile WiMAX is currently (April 2012) not available for the European market.
In March 2008, the International Telecommunications Union-Radio communications sector (ITU-R) specified a set of requirements for 4G standards, named the International Mobile Telecommunications Advanced (IMT-Advanced) specification, setting peak speed requirements for 4G service at 100 megabits per second (Mbit/s) for high mobility communication (such as from trains and cars) and 1 gigabit per second (Gbit/s) for low mobility communication (such as pedestrians and stationary users).
Since the first-release versions of Mobile WiMAX and LTE support much less than 1 Gbit/s peak bit rate, they are not fully IMT-Advanced compliant, but are often branded 4G by service providers. On
December 6, 2010, ITU-R recognized that these two technologies, as well as other beyond-3G technologies that do not fulfill the IMT-Advanced requirements, could nevertheless be considered "4G", provided they represent forerunners to IMT-Advanced compliant versions and "a substantial level of improvement in performance and capabilities with respect to the initial third generation systems now deployed".
Mobile WiMAX Release 2 (also known as WirelessMAN-Advancedor IEE 802.16m') and LTE Advanced (LTE-A) are IMT-Advanced compliant backwards compatible versions of the above two systems, standardized during the spring 2011, and promising speeds in the order of 1 Gbit/s. Services are expected in 2013.
As opposed to earlier generations, a 4G system does not support traditional circuit-switched telephony service, but all-Internet Protocol (IP) based communication such as IP telephony. As seen below, the spread spectrum radio technology used in 3G systems, is abandoned in all 4G candidate systems and replaced by OFDMA multi-carrier transmission and other frequency-domain equalization (FDE) schemes, making it possible to transfer very high bit rates despite extensive multi-path radio propagation (echoes). The peak bit rate is further improved by smart antenna arrays for multiple-input multiple-output (MIMO) communications.
The term "generation" used to name successive evolutions of radio networks in general is arbitrary. There are several interpretations, and no official definition has been made despite the consensus behind ITU-R's labels. From ITU-R's point of view, 4G is equivalent to IMT-Advanced which has specific
performance requirements as explained below. According to operators, a generation of network refers to the deployment of a new non-backward-compatible technology. The end user expects the next generation of network to provide better performance and connectivity than the previous generation. Meanwhile, GSM, UMTS and LTE networks coexist; and end-users will only receive the benefit of the new generation architecture when they simultaneously: use an access device compatible with the new infrastructure, are within range of the new infrastructure, and pay the provider for access to that new infrastructure.
New mobile generations have appeared about every ten years since the first move from 1981 analog (1G) to digital (2G) transmission in 1992. This was followed, in 2001, by 3G multi-media support, spread spectrum transmission and at least 200 kbit/s peak bit rate, in 2011/2012 expected to be followed by "real" 4G, which refers to all-Internet Protocol (IP) packet-switched networks giving mobile ultra-broadband (gigabit speed) access.
While the ITU has adopted recommendations for technologies that would be used for future global communications, they do not actually perform the standardization or development work themselves, instead relying on the work of other standards bodies such as IEEE, The WiMAX Forum and 3GPP.
In mid-1990s, the ITU-R standardization organization released the IMT-2000 requirements as a framework for what standards should be considered 3G systems, requiring 200 kbit/s peak bit rate. In 2008, ITU-R specified the IMT-Advanced (International Mobile Telecommunications Advanced) requirements for 4G systems.
The fastest 3G-based standard in the UMTS family is the HSPA+ standard, which is commercially available since 2009 and offers 28 Mbit/s downstream (22 Mbit/s upstream) without MIMO, i.e. only with one antenna, and in 2011 accelerated up to 42 Mbit/s peak bit rate downstream using either DC-HSPA+ (simultaneous use of two 5 MHz UMTS carrier)or 2x2 MIMO. In theory speeds up to 672 Mbit/s is possible, but has not been deployed yet. The fastest 3G-based standard in the CDMA2000 family is the EV-DO Rev. B, which is available since 2010 and offers 15.67 Mbit/s downstream.
from Science Facts Blog
In telecommunication systems, 4Gis the fourth generation of mobile phone mobile communication technology standards. It is a successor to the third generation (3G) standards. A 4G system provides mobile ultra-broadband Internet access, for example to laptops with USB wireless modems, to smartphones, and to other mobile devices. Conceivable applications include amended mobile web access, IP telephony, gaming services, high-definition mobile TV, video conferencing, 3D television, and cloud computing.
Two 4G candidate systems are commercially deployed: the Mobile WiMAX standard (first used in South Korea in 2006), and the first-release Long Term Evolution (LTE) standard (in Oslo, Norway and Stockholm, Sweden since 2009). It has however been debated if these first-release versions should be considered to be 4G or not, as discussed in the technical definition section below.
In the United States, Sprint (previously Clearwire) has deployed Mobile WiMAX networks since 2008, and MetroPCS was the first operator to offer LTE service in 2010. USB wireless modems have been available since the start, while WiMAX smartphones have been available since 2010, and LTE smartphones since 2011. Equipment made for different continents is not always compatible, because of different frequency bands. Mobile WiMAX is currently (April 2012) not available for the European market.
In March 2008, the International Telecommunications Union-Radio communications sector (ITU-R) specified a set of requirements for 4G standards, named the International Mobile Telecommunications Advanced (IMT-Advanced) specification, setting peak speed requirements for 4G service at 100 megabits per second (Mbit/s) for high mobility communication (such as from trains and cars) and 1 gigabit per second (Gbit/s) for low mobility communication (such as pedestrians and stationary users).
Since the first-release versions of Mobile WiMAX and LTE support much less than 1 Gbit/s peak bit rate, they are not fully IMT-Advanced compliant, but are often branded 4G by service providers. On
December 6, 2010, ITU-R recognized that these two technologies, as well as other beyond-3G technologies that do not fulfill the IMT-Advanced requirements, could nevertheless be considered "4G", provided they represent forerunners to IMT-Advanced compliant versions and "a substantial level of improvement in performance and capabilities with respect to the initial third generation systems now deployed".
Mobile WiMAX Release 2 (also known as WirelessMAN-Advancedor IEE 802.16m') and LTE Advanced (LTE-A) are IMT-Advanced compliant backwards compatible versions of the above two systems, standardized during the spring 2011, and promising speeds in the order of 1 Gbit/s. Services are expected in 2013.
As opposed to earlier generations, a 4G system does not support traditional circuit-switched telephony service, but all-Internet Protocol (IP) based communication such as IP telephony. As seen below, the spread spectrum radio technology used in 3G systems, is abandoned in all 4G candidate systems and replaced by OFDMA multi-carrier transmission and other frequency-domain equalization (FDE) schemes, making it possible to transfer very high bit rates despite extensive multi-path radio propagation (echoes). The peak bit rate is further improved by smart antenna arrays for multiple-input multiple-output (MIMO) communications.
The term "generation" used to name successive evolutions of radio networks in general is arbitrary. There are several interpretations, and no official definition has been made despite the consensus behind ITU-R's labels. From ITU-R's point of view, 4G is equivalent to IMT-Advanced which has specific
performance requirements as explained below. According to operators, a generation of network refers to the deployment of a new non-backward-compatible technology. The end user expects the next generation of network to provide better performance and connectivity than the previous generation. Meanwhile, GSM, UMTS and LTE networks coexist; and end-users will only receive the benefit of the new generation architecture when they simultaneously: use an access device compatible with the new infrastructure, are within range of the new infrastructure, and pay the provider for access to that new infrastructure.
Background
The nomenclature of the generations generally refers to a change in the fundamental nature of the service, non-backwards-compatible transmission technology, higher peak bit rates, new frequency bands, wider channel frequency bandwidth in Hertz, and higher capacity for many simultaneous data transfers (higher system spectral efficiency in bit/second/Hertz/site).New mobile generations have appeared about every ten years since the first move from 1981 analog (1G) to digital (2G) transmission in 1992. This was followed, in 2001, by 3G multi-media support, spread spectrum transmission and at least 200 kbit/s peak bit rate, in 2011/2012 expected to be followed by "real" 4G, which refers to all-Internet Protocol (IP) packet-switched networks giving mobile ultra-broadband (gigabit speed) access.
While the ITU has adopted recommendations for technologies that would be used for future global communications, they do not actually perform the standardization or development work themselves, instead relying on the work of other standards bodies such as IEEE, The WiMAX Forum and 3GPP.
In mid-1990s, the ITU-R standardization organization released the IMT-2000 requirements as a framework for what standards should be considered 3G systems, requiring 200 kbit/s peak bit rate. In 2008, ITU-R specified the IMT-Advanced (International Mobile Telecommunications Advanced) requirements for 4G systems.
The fastest 3G-based standard in the UMTS family is the HSPA+ standard, which is commercially available since 2009 and offers 28 Mbit/s downstream (22 Mbit/s upstream) without MIMO, i.e. only with one antenna, and in 2011 accelerated up to 42 Mbit/s peak bit rate downstream using either DC-HSPA+ (simultaneous use of two 5 MHz UMTS carrier)or 2x2 MIMO. In theory speeds up to 672 Mbit/s is possible, but has not been deployed yet. The fastest 3G-based standard in the CDMA2000 family is the EV-DO Rev. B, which is available since 2010 and offers 15.67 Mbit/s downstream.
IMT-Advanced requirements
This article uses 4G to refer to IMT-Advanced (International Mobile Telecommunications Advanced), as defined by ITU-R. An IMT-Advanced cellular system must fulfill the following requirements:- Be based on an all-IP packet switched network.
- Have peak data rates of up to approximately 100 Mbit/s for high mobility such as mobile access and up to approximately 1 Gbit/s for low mobility such as nomadic/local wireless access.
- Be able to dynamically share and use the network resources to support more simultaneous users per cell.
- Using scalable channel bandwidths of 5–20 MHz, optionally up to 40 MHz.
- Have peak link spectral efficiency of 15 bit/s/Hz in the downlink, and 6.75 bit/s/Hz in the uplink (meaning that 1 Gbit/s in the downlink should be possible over less than 67 MHz bandwidth).
- System spectral efficiency of up to 3 bit/s/Hz/cell in the downlink and 2.25 bit/s/Hz/cell for indoor usage.
- Smooth handovers across heterogeneous networks.
- The ability to offer high quality of service for next generation multimedia support.
- LTE Advanced standardized by the 3GPP
- 802.16m standardized by the IEEE (i.e. WiMAX)